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Purpose: Cancer antigen-—specific T cells are key components in
antitumor immune response, yet their identification in the tumor
microenvironment remains challenging, as most cancer antigens
are unknown. Recent advance in immunology suggests that similar
T-cell receptor (TCR) sequences can be clustered to infer shared
antigen specificity. This study aims to identify antigen-specific
TCRs from the tumor genomics sequencing data.

Experimental Design: We used the TRUST (Tcr Repertoire
Utilities for Solid Tissue) algorithm to assemble the TCR hypervariable
CDR3 regions from 9,700 bulk tumor RNA-sequencing (RNA-seq)
samples, and developed a computational method, iSMART, to group
similar TCRs into antigen-specific clusters. Integrative analysis on the
TCR clusters with multi-omics datasets was performed to profile
cancer-associated T cells and to uncover novel cancer antigens.

Results: Clustered TCRs are associated with signatures of T-
cell activation after antigen encounter. We further elucidated the

Introduction

Antigen-specific tumor-infiltrating T lymphocytes (TIL) play a
central role in cancer immunity (1-3), with demonstrated applications
in cancer immunotherapies, including checkpoint blockade (4-6)
and adoptive cell transfer therapies (7, 8). Therefore, identification
of antigen-specific TIL is critical to understanding tumor-immune
interactions and designing individualized treatments. However,
this task remains challenging despite extensive clinical efforts (9, 10).
First, cancer antigens may come from diverse sources, including
missense mutations (11, 12), frameshift insertions or deletions (13, 14),
tissue-specific gene overexpression (15, 16), and other antigenic
processes (17-20), making it difficult to profile all the possible targets.
In addition, the antigen-binding CDR3 region on the T-cell receptor
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phenotypes of clustered T cells using single-cell RNA-seq
data, which revealed a novel subset of tissue-resident memory
T-cell population with elevated metabolic status. An exciting appli-
cation of the TCR clusters is to identify novel cancer antigens,
exemplified by our identification of a candidate cancer/testis gene,
HSFX1, through integrated analysis of HLA alleles and genomics
data. The target was further validated using vaccination of human-
ized HLA-A*02:01 mice and ELISpot assay. Finally, we showed that
clustered tumor-infiltrating TCRs can differentiate patients with
early-stage cancer from healthy donors, using blood TCR repertoire
sequencing data, suggesting potential applications in noninvasive
cancer detection.

Conclusions: Our analysis on the antigen-specific TCR
clusters provides a unique resource for alternative antigen
discovery and biomarker identification for cancer immu-
notherapies.

(TCR) is extremely diverse (21) and their targets are usually unknown.
Thus, limited progress has been made in the analysis of TIL repertoire
despite pressing clinical needs. This is because statistical significance is
usually difficult to reach in such analyses unless using a large cancer
cohort.

Efforts have recently been made to partition the immune repertoire
into groups linking to antigen specificity (GLIPH; ref. 22) or evaluate
the similarity of CDR3s with known specificity for functional predic-
tions (TCRdist; ref. 23). These studies set the stage for using clustering
for detection of antigen-specific TCRs when the knowledge of the
antigens is unavailable. GLIPH was applied to the data of infectious
disease and reliably defined TCR groups that can contact with anti-
genic peptides, while TCRdist provided a quantitative measure of TCR
similarity. Both computational frameworks have the potential to study
the repertoire of cancer-associated TCRs. However, due to the
extremely diverse interactions between cancer antigens and tumor-
reactive TILs, their specificity in recognizing antigen-specific TCRs
need to be further evaluated.

In this work, we systematically compared different clustering
methods and introduced a new tool to identify the potentially anti-
gen-specific T cells using a novel CDR3 dataset profiled from over
9,700 tumor RNA-seq samples from the Cancer Genome Atlas
(TCGA). Similar studies have been conducted to investigate patterns
of shared TCRs in human and mice (24, 25). However, they were not
intended to provide in-depth analysis on the TCR clusters or their
associated antigens in cancer. Our analysis integrated information of
the antigen-specific TIL clusters, cancer genomics data, patient HLA
genotypes, single-cell RNA-seq data, and immune repertoire sequenc-
ing data (26, 27). This pan-cancer multi-omics analysis led to several
interesting findings, which might provide novel targets for late-stage
cancer treatment, and suggest alternative avenues for cancer diagnosis.
Specifically, we explored the phenotypes of antigen-specific T cells in
the tumor microenvironment, and identified a previously unreported
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Translational Relevance

This analysis extensively identified cancer-associated T-cell
receptors using a novel computational algorithm and large geno-
mics data integration. We made three clinically relevant discov-
eries: (i) A subset of antigen-specific tumor-infiltrating T cells carry
the tissue-resident memory (T,,,) phenotype and express cytotoxic
molecules. We showed that the presence of these Ty, cells can be
used as a predictor for patient outcome in multiple cancer types. (ii)
Using T-cell receptor (TCR) clusters, we predicted HSP transcrip-
tion factor X-linked 1 (HSFXI) to be a novel cancer-associated
antigen with restricted expression in endometrial or colorectal
tumors. HSFX1 can serve as a candidate for therapeutic vaccine
development. (iii) Using independent study cohorts, we observed
significantly elevated levels of cancer-associated TCRs in the blood
of patients with cancer compared with healthy donors. This result
might suggest an alternative avenue to develop noninvasive diag-
nostic approaches using blood TCR repertoire.

tissue-resident memory T-cell (T,,,) subpopulation with altered met-
abolic program. In addition, we identified novel candidate cancer-
associated antigens and performed in vivo validation. Our findings
may expand the current pool of cancer antigens for future therapeutic
vaccine development. Finally, we demonstrated that the cancer-
associated TCRs derived from the TCGA samples could also be
observed in the peripheral blood repertoire of patients with both
early- and late-stage cancer of independent cohorts. We then per-
formed a proof-of-principle analysis to distinguish patients with early-
stage cancer from healthy individuals using the content of cancer
antigen-specific T cells.

Materials and Methods

Data resources information

TCGA level-2 RNA-seq data aligned to hgl9 human reference
genome by MapSplice (28) were downloaded from GDClegacy archive
(https://portal.gdc.cancer.gov/legacy-archive/). Gene expression data
(TPM), mutation annotation files, and patient clinical information of
the TCGA cohort were downloaded from GDAC broad firehose
(https://gdac.broadinstitute.org/). Tumor purity information was
downloaded from the Cistrome TIMER website (http://cistrome.
org/TIMER/misc/AGPall.zip). TCR repertoire data and patient infor-
mation for the HCMV cohort, late-stage melanoma, and early breast
cancer samples, were downloaded from AdaptiveBiotechnology
immunoSeq Analyzer (https://www.adaptivebiotech.com/). Antigen-
specific CDR3 sequence information for benchmarking iSMART were
downloaded from VDJdb (https://vdjdb.cdr3.net/). GLIPH software
package was accessed from GitHub (https://github.com/immunoengi
neer/gliph). Single-cell gene expression data and matched TCR infor-
mation were downloaded from GEO database (accession number
GSE114724).

Materials and animal model

HSFX1-derived 9-mer peptide was synthesized by GenScript; CpG
oligonucleotide ODN 1826 was purchased from InvivoGen with
catalog number 1826-1; polyinosinic-polycytidylic acid sodium salt,
or poly (I:C), was ordered from Millipore Sigma with catalog number
P1530-25MG. Immunocompetent C57BL/6] and transgenic C57BL/6-
Mcph1Tg(HLA-A2.1)1Enge/] mice were obtained from Jackson Lab-

oratory (JAX:000664 and JAX:003475). All mice were maintained
under specific pathogen—free conditions, and all animal procedures
were performed in accordance with the experimental animal guide-
lines set by the Institutional Animal Care and Use Committee of the
UT Southwestern Medical Center (Dallas, TX) under animal protocol
number (APN): 2015-101350.

iSMART for pairwise CDR3 alignment and clustering

iSMART takes M complete CDR3 sequences as input, where
complete CDR3 region is defined as the last cysteine in the variable
gene to the first amino acid in the FGXG motif in the joining gene (29).
It first orders the CDR3s by length and then performs pairwise
comparisons. For CDR3s with different lengths, iSMART allows at
most one insertion in the comparison, and imposes a gap penalty
(default 6). Alignment scores are calculated on the basis of BLOSUM62
matrix, with individual matched score capped at 4. The third to (n-3)™
positions of the CDR3s are used for scoring, where n is the CDR3
amino acid sequence length. Pairwise alignment score is normalized by
the length of the longer CDR3 sequence (1-4, excluding first and last 2
amino acids). After calculation of the M-by-M pairwise scoring matrix,
a predefined cut-off value (default 3.5) is applied to filter out all the low
scoring comparisons. iSMART then performs a depth-first search on
the matrix to identify all the connected CDR3 clusters, and output all
the CDR3s with empirical cluster IDs. iSMART is written in Python
and the source code is publicly available.

Although iSMART is benchmarked to run without variable gene
assignment, it supports the input with variable gene information. In
this mode, the pairwise alignment on the CDR3 regions is the same
except that iSMART uses the 57 to (1-3)™ positions of the sequence for
scoring. As the first 4 amino acids of the CDR3s are mainly determined
by the variable gene, we made this change to avoid repeated use of
variable gene information. In the pairwise sequence comparison step,
the CDR1 and CDR2 regions of two TCRs are also used to calculate
alignment scores under the same rules. The total score is scaled to 8,
where CDR3 and variable gene contribute equally, and a cut-off value
(default 7.5) is used to generate the CDR3 clusters. iSMART in variable
gene mode was tested using the 15 antigen benchmark dataset, which is
described in section below, and reached a higher specificity of 94.3%
(100/106 clusters have unique antigen assignment) than without
variable gene input.

iSMART, TCRdist, and GLIPH performance evaluation

Both iSMART and GLIPH can predict antigen-specific CDR3
clusters without variable gene information. TCRdist can also be used
to perform this task, but requires additional codes to identify closely
related TCR groups. We programmed the codes according to the
descriptions in the original article and added the input/output modules
to allow TCR P chain clustering without variable gene usage. We
evaluated the performances of all three methods using TCRs of known
antigen specificity in VDJdb (30). We selected 15 9-mer human
antigens with balanced number (K) of associated TCRB CDR3s
(100<K<1,000; Supplementary Data S1). CDR3s associated with more
than one antigens were excluded, resulting in a total of 2,347 unique
sequences. Both iSMART and GLIPH were run on this dataset with
default parameters.

The command line for iSMART is python iSMART.py —f huma-
nl5aa.txt —v, where —v option is applied to disable the use of variable
gene. For GLIPH, the command line is./gliph-group-discovery.pl —tcr
human15aa.txt.

Interestingly, although iSMART performs time-consuming pair-
wise sequence alignments, its computational time (1 second) is less
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than TCRdist (24 seconds) or GLIPH (approximately 1 hour) on
MacBook Pro with 3.1 GHz Intel core i7 and 16 GB DDR3 memory.
Therefore, iSMART has the computational efficiency to scale up for
larger TCR repertoire datasets.

The clustering of TCRdist relies on the cutoff of pairwise TCR
distances. Lower cutoff results in higher specificity, but will reduce
sensitivity and cluster size. In this work, we chose the cutoff to be 12 to
match the fraction of large clusters (>3 TCRs). At this cutoff, it calls
20.2% large clusters, comparable with iSMART (18.4%) and GLIPH
(22.0%). If we reduce the cutoff by 1, this fraction drops down to 7%,
which is not useful for downstream analysis.

As each CDR3 is uniquely linked to one antigen in the benchmark
dataset, we defined cluster purity (p) as the number of the most
abundant antigen divided by the number of CDR3s in a cluster. We
use the percent of completely pure (P = 1) clusters as a measure for
specificity. To make visualization of the clustering specificity, we
computed the cross-antigen classification errors as follows: the 15-
by-15 cross-antigen matrix (M) is initialized by 0, and for each cluster,
let A denote the set of antigens associated with the CDR3s in this
cluster, we add 1 to all the entries in M[A, A]. Therefore, if A contains
only one antigen, the diagonal values for M will increase by 1.
Otherwise the off-diagonal values will increase by 1, which are
considered as classification errors. We looped through all the clusters
and used the final output to plot the heatmaps in Supplementary
Figure S2.

Noncancerous public TCR identification

A critical preprocessing procedure in our analysis is to exclude
noncancerous public TCRs to reduce false positives in our down-
stream analysis. We used a cohort of noncancer individuals with
TCR repertoire sequencing data available (31). There are two
batches of this cohort, with the first batch containing 666 human
cytomegalovirus (HCMYV) infected (n = 289) or normal individuals.
The HCMV-infected individuals can be used as control samples for
our purposes. The second batch contains 120 individuals. We will
use the first batch to remove public TCRs and the second for
downstream analysis, to avoid systematic bias. It is known that
cancer-specific T cells are also present in healthy individuals in the
form of low abundant naive T cells (32). Therefore, to prevent false
removal of bona fide cancer-specific CDR3s, we restricted our
analysis within the top 10,000 most abundant sequences, sufficient
to cover all the clones with >5 copies that are expected to be effector
T cells. We combined all the sequences as normal CDR3s to be
removed in the TCGA data before iSMART clustering. The result-
ing dataset as well as samples used in this analysis are available as
Supplementary Data S2.

We removed public sequences from the 170,516 complete CDR3s
and obtained 82,427 nonpublic sequences for downstream analysis. As
the TCR repertoire data in the public domain are mainly § chain
sequences, currently we do not have enough data to eliminate public
o-chain CDR3s from the analysis. We will rely on future efforts to
sequence more TCR o-chain repertoire samples to define public
o-chain CDR3 sequences.

Analysis of single-cell sequencing data

Postprocessed gene expression data in sparse matrix format (mtx)
and TCR hypervariable CDR3 sequences with matched cell barcodes
were downloaded directly from the GEO database. In total, there are 5
samples from 3 patients, BC09, BC10, and BC11. BC10 has the largest
overlap with TCGA-derived CDR3 clusters. For BC10, we selected
1,103 genes with SD >1 and performed t-Distributed Stochastic
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Neighbor Embedding (tSNE) analysis on the 4,926 cells using these
genes for dimension reduction. This filter is purely for visualization
purposes. Two-dimensional scatter plot using tSNE values were
generated to visualize the distributions of genes of interest. On the
basis of the locally enriched pattern of 18 clustered cells, we defined a
subgroup of 44 cells. For each of the 1,103 genes, we performed
Wilcoxon rank sum test between this group and other cells and used
Benjamini-Hochberg method to evaluate FDR. These results, includ-
ing the cell barcodes for the selected group, are available in Supple-
mentary Data S1. ZNF683 expression levels in the TCGA samples were
split into two groups by the median level. Survival analysis for ZNF683
was performed using Cox proportional hazard model on the binary
variable corrected for patient age.

We performed cell trajectory analysis for selected clonotypes in the
breast cancer samples. For sample BC10, we selected 418 cells with
CDR3 sequences found in the CD8" subgroup identified in the
tSNE plot, and used R package monocle (33) to perform cell
ordering by pseudotime. As the direction of pseudotime is arbitrary,
we used representative biomarkers for T-cell activation to deter-
mine the beginning of the trajectory, and identified the T
population. The T,,, clusters were then selected at the end of the
trajectory. Spearman correlation between each gene expression level
and pseudotime was calculated, and we selected important biomar-
kers for cell identity (IL7R, TCF7, CCR7), cytotoxicity (GZMB,
PRFI, IFNG), exhaustion (PD-1, LAG3, TIM-3), resident memory
signature (SELL, KLRGI, CDI03), and metabolic enzymes. For
BC11, we first merged the two biological replicates into one dataset
and selected 31 cells with IL7R<1, TCF7<1, GZMB>5, ZNF683>5,
and CD103>10 as tissue-resident T cells and used all the 728 cells
sharing the same CDR3s with these 31 cells to perform the
pseudotime trajectory analysis. These cells in total come from 11
clonotypes, but for the individual clonotype evolution analysis, we
removed two clonotypes with n = 1 and showed the remaining 9 in
Supplementary Fig. SOC. We did not identify enough cells using the
same selection criteria for T,,, cells for sample BC09.

Gene expression analysis

We performed a genome-wide correlative analysis to identify
genes associated with counts (K) of clustered CDR3s in each
individual. TCGA samples with both gene expression and genomic
estimated tumor purity information were further selected, and 10
cancer types with more than 100 samples were kept. For each
cancer, we calculated partial Spearman correlation between K and
the expression level for each gene. Tumor purity is corrected in this
analysis as it is expected to impact gene expression profiles (34) and
is correlated to T-cell infiltration. False discovery rate is estimated
using Benjamini-Hochberg procedure by pooling all the P values.
After FDR calculation, we selected genes with correlation <—0.1
and FDR < 0.05. We further removed genes significant in only one
cancer type. This step resulted in 414 genes, as shown in the
Heatmap in Fig. 2. The representative clusters were manually
selected to include cancer-gene blocks with significantly negative
associations between K and gene expression levels across multiple
cancer types, and was intended for visualization purposes only.
Unbiased GO term enrichment analysis was performed for all
414 genes using GSEA.

We also performed differential gene expression analysis to identify
novel cancer-associated antigens (Fig. 4). 120 clusters with CDR3
length 20>L>13 and with >10 sequences were selected. For each
cluster, we performed one-tailed Wilcoxon rank sum test for each gene
between clustered and nonclustered individuals from all cancers,
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pooled all the P values and estimated FDR using Benjamini-Hochberg
correction. This step selected 3,524 significant results (FDR<0.05 and
fold change >10), including 1,409 unique genes spanning 115 clusters.
Fold change was calculated for each cluster, as the median expression
value of the samples in the CDR3 cluster divided by that of those not in
the cluster. If the denominator is zero, we used an arbitrarily small
number 10™"%, Of all the protein-coding genes, HSFX1 has the top
significant value, and is associated with clusters 1,724 and 1,767. We
performed a second differential gene expression analysis to visualize
the top highly expressed genes, by combining samples in the two
clusters.

Vaccination of naive and transgenic mice and ELISpot assay

C57BL/6] and C57BL/6]-HLA-A2.1Tg mice were purchased from
the Jackson Laboratory. All mice were maintained under specific
pathogen-free conditions at UT Southwestern Medical Center (Dallas,
TX). Ten micrograms of VMF or VRF peptide was mixed with 50 pg
ODN1826 and 100 pg poly (I:C) in 100 uL PBS and then subcuta-
neously injected to the mouse on day 0 and day 14. Single-cell
suspensions were prepared on day 18 post first vaccination. Spleno-
cytes were seeded at 4 x 10° per well and stimulated with either 10 ug
peptide or PMA + Ionomycin for 36 hours. ELISpot assay was
performed using an IFNy ELISpot assay kit (BD Biosciences) accord-
ing to the manufacturer's instructions. Spots were enumerated by
ImmunoSpot Analyzer (CTL).

HLA allele-binding prediction

All the HLA allele-binding predictions in this work were performed
using either NetMHC or NetMHCpan online server. We implemented
NetMHCpan for less common HLA alleles not covered in NetMHC.
For missense mutations, the input peptide is a 17-mer peptide with
mutated amino acid in the middle. For frameshift mutations, we
included 8-mer before and all the amino acid sequence after the
mutation locus. For cancer-associated antigens, we downloaded the
complete protein sequence from Uniprot (www.uniprot.org), and
input the fasta file to NetMHC/NetMHCpan server. Biding of the
control peptide VRF for in vivo validation to HLA-A*02:01 was
predicted using NetMHC server. Default rank cutoffs were applied
to define weak (<2) or strong binders (<0.5). We exhaustively
predicted the binding affinities of 415 9-mer peptides produced
by the HSFX1I protein. The HLA alleles (n = 32) were selected to
match the 9 individuals with HSFXI mRNA expression. In total, we
identified 6 epitopes (FQRDSPHLL, SAPPATPVM, AAVPGPAAL,
YVPGSPTQM, NSYGPVVAL, and VMFPHLPAL) binding to all the
individuals. However, only VMF binds to A*02:01 with high affinity.
On the basis of our search on the Jackson laboratory catalog, the
available transgenic humanized mouse models can only test the
binding for 3 MHC-I alleles: A*02:01, A*11:01, and B*27:05. Among
them, A*02:01 is the only allele carried by a subset of the 9 individuals.
Therefore, we used VMF for downstream experimental validation for
the immunogenicity of the HSFXI protein. Same analysis was per-
formed for TSSK2 protein sequence. We predicted the binding affinity
of 349 9-mer peptides to 22 alleles from the 5 patients in cluster 189.
We identified two peptides (SAYSERLKF and GRIYIIMEL) as strong
binders to all 5 individuals.

HXFX1 IHC staining of endometrial tumor and healthy tissue
samples

Formalin-fixed paraffin-embedded (FFPE) tissue slides of endome-
trial serous carcinoma samples and healthy tissue array were obtained
from UTSW Department of Pathology under Institutional review

board protocol STU 072018-066. HSFX1 IHC antibody was purchased
from LiveSpan BioSciences Inc with catalog number: LS-C165049.
Four-micron-thick paraffin sections of formalin-fixed samples were
cut, deparaffinized in xylene, and rehydrated through graded con-
centrations of ethanol. Heat-induced antigen retrieval was performed
by boiling in sodium citrate buffer (10 mmol/L sodium citrate, pH 6.0)
for 10 minutes at high power and then 15 minutes at low power in the
microwave oven rated 200-2,200 W. Endogenous peroxidase activity
was blocked by incubating with Dual Endogenous Enzyme Block
(Dako, K4065) for 30 minutes at room temperature, followed by the
incubation overnight at 4°C with the primary antibody to HSFXI
1:100. The subsequent staining was developed using the Dako EnVi-
sion + Dual Link System-HRP (DAB+) kits (Dako, K4065). Briefly,
the sections were incubated with Labeled Polymer-HRP Rabbit/Mouse
for 30 minutes and staining was achieved by adding 100 uL of DAB+
Chromogen diluted 1:50 in substrate buffer for 5 to 10 minutes. Nuclei
were counterstained with hematoxylin. All IHC staining results were
verified by pathologist (H. Chen)at Department of Pathology, USTW
(Dallas TX).

Prediction of cancer disease status

In this analysis, we compared 3 TCR repertoire datasets from
different studies, including pre/post anti-CTLA4 treatment late-
stage melanoma (melanoma), early breast cancer (breast cancer),
and HCMV cohort (HCMYV) as normal control. To avoid systematic
bias after public TCR removal, we randomly sampled 50 individuals
from the second batch (n = 120) of the HCMV cohort in this
analysis. Direct comparison between different study cohorts will be
biased toward sequencing depth. Therefore, we conducted a down-
sampling procedure to ensure the comparability. The targeted
capture protocol applied for TCR repertoire sequencing allowed
one read to completely cover the whole CDR3 region, and read
count is used to estimate clonal abundance. We first calculate the
size for each TCR-seq library (N), which is the summation of the
read counts (m) for all the CDR3s. A combined vector of CDR3s
with length N was made, with each CDR3 sequence i repeated by m;
times, where m; is the read count for CDR3 sequence i. For
the melanoma cohort, we used all the cancer samples (n = 21 for
either pre- or posttreatment), and randomly sampled 100 indivi-
duals with replacement as normal control. For each sample, we
downsampled the library to K = 100,000 reads, each read being a
CDR3 amino acid sequence. The read count (m’) for each unique
CDR3 was then calculated. For each sample, CDR3s with identical
sequence to one of the cancer-associated CDR3s were selected, and
the summation of m’ for all the selected CDR3s was used as
predictor (CDR3 abundance) for cancer status. For breast cancer
cohort, same strategy was applied, except that we used K = 60,000
for peripheral blood mononuclear cells (PBMC) and 20,000 for TIL
samples.

Statistical analysis

Statistical analyses were performed using R statistical programming
language (35). Survival analysis was implemented using Cox propor-
tional hazard model in R package survival. All survival analyses
performed in this work were restricted to one cancer type. ROCs and
AUC calculations were performed with R package AUC. tSNE plots for
single-cell analysis were generated using Rtsne (36). Single-cell pseu-
dotime trajectory analysis was performed using cellrangerRkit and
monocle. Two-way ANOVA test for comparing different treatment
groups of vaccinated mice was performed using commercial software
GraphPad Prism.
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Results

Detection of antigen-specific CDR3 clusters with iSMART

We have previously described the TRUST algorithm (37) for
sensitive detection of TCR hypervariable CDR3 sequences using bulk
tissue RNA-seq data. In this work, we applied a later version of
TRUST (38) with improved sensitivity to 9,709 TCGA tumor
RNA-seq samples and assembled 1.5 million CDR3 sequences (Fig. 1).
Of these, 170,000 were complete productive CDR3s, following the
IMGT nomenclature (29). A sizeable fraction of the human T-cell
repertoire is public, derived from biased V(D)] recombination (39),
and are present in both healthy and diseased individuals. To exclude
the irrelevant public TCRs that are prevalent in healthy indivi-
duals (24), we compared the TCGA TIL CDR3s with a large cohort
of TCR repertoire data from noncancer individuals (31) (Materials and
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Figure 1.

Methodology summary and performance evaluation for iSMART. Flowchart
illustrating the analytic procedures carried out in this work to generate CDR3
clusters using TCR receptor sequences extracted from the tumor RNA-seq data.

Doy RadarhidRrprgttps://bloodcancerdiscov.aacrjournals.org at UT SOUTHWESTERN MED CTR9NAHEMSRaL, Z5189-M=p0Y 02019 1363

Tumor-Infiltrating Antigen-Specific TCR Clusters

Methods). CDR3s observed in these samples with high abundances
were excluded, leaving 82,000 nonpublic sequences.

Identification of antigen-specific CDR3 groups from TCR reper-
toire data is highly desirable, yet challenging due to the high diversity of
CDR3 regions (21) and promiscuous binding between T-cell receptors
and antigenic peptides (40-42). Previous approaches (22, 23) dem-
onstrated that CDR3s grouped into motif-sharing clusters are expected
to recognize the same antigens, and reported two methods, GLIPH and
TCRdist, to perform antigen-specific clustering of the B chain CDR3
regions. In this work, we developed a fast clustering method, immuno-
Similarity Measurement by Aligning Receptors of T cells, or iSMART
(Materials and Methods). TCRs specific to 15 known epitopes vali-
dated in previous experiments were used as benchmark data. Each of
the three methods was applied to this dataset to compare the perfor-
mances. Implementation of iSMART and GLIPH used their default
parameters, where a distance cutoff of 12 was applied for TCRdist to
ensure equally high fraction of large TCR clusters (with >3 sequences;
Supplementary Fig. S1A).

Specificity was measured by cluster purity, the percentage of the
most abundant antigen assignment in the cluster. Perfect purity (= 1)
is reached only when all the TCRs in a cluster are specific to the same
antigen. We observed that iSMART clustering generally achieves
the highest purity across different sizes, yet with slightly lower
cluster counts (Supplementary Fig. SIB). In this study, we are inter-
ested in large clusters with >3 TCRes, as they yield higher statistical
power to detect shared antigens compared with smaller ones. Of all
three methods, the mean purity of large clusters is the highest for
iSMART (Supplementary Fig. S1C). We also investigated if the higher
specificity of iSMART is antigen-dependent. Antigen-specificity of the
clustered TCRs was visualized by heatmaps (Supplementary Fig. S2A).
Off-diagonal signal indicates TCRs specific to different antigens were
grouped together. We noted that iSMART has the lowest amount of
nonspecific assignment. This observation was further quantified by
cluster purities, where iSMART clustering has the highest purity for 14
of the 15 antigens (Supplementary Fig. S2B).

From these results, we concluded that iSMART is a more specific
clustering method, and applied it to group the 82,000 nonpublic TIL
CDR3 sequences from the TCGA data. We detected a total of 4,657
clusters (Fig. 1). As most clusters contain more than one individual, we
also used the term “CDR3 cluster” to denote the subset of patients
carrying the CDR3s in a given cluster. A total of 18,113 CDR3
sequences were grouped into these clusters, and were expected to be
enriched for cancer-associated TCRs. To note, each CDR3 is unique to
individual patient, but may be presented in multiple patients in the
dataset. These sequences will be clustered as well.

Features of CDR3 clusters and association with tumor gene
expression profiles

The number of sequences in the clusters spans two orders of
magnitude (Supplementary Fig. S3A), and for each sample, the
number of clustered CDR3s (K) also spans two orders of magnitude
(Supplementary Fig. S3B). Higher value of K is expected to be
associated with higher abundance of antigen-specific T cells in the
tumor microenvironment; accordingly, lower K might be related to
higher level of immunosuppression. For each gene, we calculated the
partial Spearman correlation between K and its expression levels
(Supplementary Data S1), controlled for tumor purity, which is
expected to influence both values (ref. 43; Materials and Methods).
Among the genes with top positive correlations are putative T-cell
activation markers, including TBX21 (T-bet), ICOS, TIGIT, and gran-
zymes (Supplementary Fig. S4). Gene ontology enrichment (44)
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analysis suggested that the top 500 genes are strongly enriched for
immune cell activation and immune responses (Supplementary
Table S1). Interestingly, on the top of the list, there is a pair of
lysophosphatidylserine receptors, GPR174 and P2RY10, which have
been identified as suppressors for regulatory T-cell function (ref. 45;
Supplementary Fig. S4). These results strongly suggest that CDR3s
clustered by iSMART are enriched for activated T cells in the tumor
microenvironment.

We next investigated genes negatively correlated with K as potential
regulators for T-cell inactivation and exclusion (Fig. 2). The 414 genes
with correlation < —0.1 and FDR < 0.05 were significantly enriched in
mitochondrial-related biological processes (GO term enrichment
analysis, FDR = 1.4 x 107°). We observed four interesting clusters.
Cluster (i) contains a putative oncogene MAPK3 (46), inhibition of
which has been linked to enhanced antitumor immune response (47).
This cluster also harbors a key glycolysis enzyme, ALDOA, which has
recently been shown to impair T-cell infiltration and cytotoxicity (48).
Cluster (ii) contains two oncogenes, RHOD and PKP3, the former
recently being implicated in immune suppression (49). We also
identified a number of other metabolic enzymes, including protein
metabolic enzyme POMGNT], cytochrome ¢ enzymes COX6A1 and
UQCRQ, lipid metabolic enzymes DGATI and FAAH, etc, supporting
the recently elucidated immunosuppressive role of cancer metabolism
pathways (50).

Identification of T, subpopulations with distinct metabolic
status

To further elucidate the phenotypes of the T-cell clonotypes with
clustered CDR3s, we analyzed a recently generated single-cell RNA-
seq (scRNA-seq) data with matched TCR information (51). Using the
TCGA-derived CDR3s as clonotype markers, we identified a number
of clustered T-cell clones in the three breast tumor scRNA-seq samples.
We first studied sample BC10, which has the largestamount (n = 55) of
cells carrying clustered CDR3s. The selected 55 cells were visualized on
the background of all 4,926 cells using tSNE (52) plots, and observed a
local clustering of 18 events in a restricted region (Fig. 3A). All 18
events share the same 3 chain CDR3 sequence, and we delineated the
region containing these cells as a separate CD8" subgroup (1 = 44).
Differential gene expression analysis on the cells in this group against
all the others (Supplementary Data S1) revealed upregulated genes
both involved in T-cell cytotoxicity (GZMB, PRFI, IFNG) and exhaus-
tion (PDCDI, LAG3; Supplementary Fig. S5A). Interestingly, the top
targets showed high consistency with a recently reported T,,, signa-
ture (53), including upregulation of CD103 (ITGAE), TIGIT, and
GZMB and downregulation of SELL (CD62L), KLF2, and KLRGI.
This group also expresses a number of other previously reported T,
markers (54) (Supplementary Fig. S6), including transcription factor
ZNF683, or HOBIT (homolog of Blimp-1 in T cells), a key regulator for
T, differentiation (55). We observed significant association of
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Potential negative regulators for T-cell activation in the tumor microenvironment. Genes with Spearman correlation p < —0.1 and FDR < 0.05 were selected for
visualization in the heatmap. Hierarchical clustering on p was performed to order the genes into similar groups across different cancer types. Four representative
clusters with putative oncogenes (labeled by black arrows) or recently identified metabolic enzymes (red arrows) were displayed as smaller heatmaps in the bottom
panels. Statistical significance was evaluated using partial Spearman correlation test correcting for tumor purity, and FDR was performed using Benjamini-Hochberg

procedure.
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iSMART-clustered clonotypes showing tissue-resident memory phenotype. A, tSNE plots showing the distributions for clustered clonotypes in the TIL population
(left), and the expression levels of selected putative markers for cell identity (CD8A/FOXP3/ZNF683) or function (GZMB; right four panels). All selected markers
passed FDR = 0.05. Color legends for gene expression are in log scale. B, Kaplan-Meier curves for four TCGA cancers showing the survival benefit for ZNF683 high
expression. For each cancer, median value was applied to define high or low groups. Statistical significance and HRs were evaluated using Cox proportional hazards
model. C, Pseudotime trajectory plot illustrating the inferred evolutionary path. Cell clusters located on the beginning or end of the trajectory were manually selected.
Representative markers significantly correlated (Spearman correlation test, FDR < 0.05) with pseudotime inference were labeled for each cluster, with red for
negative (highin Ty.e) and green for positive (highin T,,) correlations. D, Boxplots showing the distributions for selective metabolic enzymes in the three cell clusters
shown in C. Statistical significance for differential gene expression between T, and T,y, was evaluated using Wilcoxon rank sum test, with FDR corrected by

Benjamini-Hochberg method.

ZNF683 expression with better outcomes in multiple cancer types
(Fig. 3B), supporting the antitumor role for T, cells.

T cells undergo profound differentiations in the tumor microen-
vironment, and it is unclear which evolutionary path T cells have taken
to become resident memory cells. The 44 cells in the subgroup come
from 20 productive clonotypes, which in total contain 418 cells. We
performed single-cell trajectory analysis (33) to infer the progression
of these TILs (Fig. 3C and Materials and Methods). The pseudotime
trajectory starts from a group of cells (Tp.) expressing high levels of
IL7R, SELL, and KLRGI, with low expression of effector molecules
(GZMB, PRF1, IFNG) and exhaustion markers (PDCDI1, LAG3, TIM-
3). These markers agree with the signatures of effector T cells primed
by antigens and still maintained mobility, and will later differentiate
into memory cells (56). We designated them as precursor cells, as
effector memory T cells will lose mobility markers (KLRGI and SELL;
ref. 53) after tissue homing. Two clusters were observed at the end of
the trajectory, both carrying the resident memory markers, and we
named them T,,; and T,,,,. Notably, the T, cluster largely overlaps
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with the previously identified CD8" subgroup. Differential expression
analysis revealed that compared with T,,;, the newly identified T,
population significantly upregulates metabolic enzymes, including
GAPDH, COX8A, ATP5CI, etc (Fig. 3D; Supplementary Fig. S5B).
The high expression of metabolic related genes in the T,,,, population
is not a consequence of dying cells (Supplementary Fig. S7). Pseudo-
time trajectories for individual clonotypes revealed that the differen-
tiation of T cells into resident memory status might be receptor
dependent (Supplementary Fig. S8). Specifically, we observed different
distributions across the three populations for different T cell clones: (i)
mainly in Tpre and Tyyy; (ii) mainly in Ty, and Typy,. Few clones were
distributed only in Ty and Tm,, without the presence of Tym;. This
observation suggested that infiltrating T cells may undergo sequential
evolution (Tpre t0 Timy then Ty to Temy) to reach the terminal status.

We analyzed other scRNA-seq samples to see whether this obser-
vation is reproducible, and indeed, a strikingly similar pseudotime
trajectory for resident memory T cells was observed in sample BC11
(Supplementary Fig. S9A). Representative markers observed in sample
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BC10 also showed significant differences across the three cell groups
with consistent trends. Higher expression of metabolic genes was also
observed in the T, group (Supplementary Fig. S9B). In addition, the
corresponding clonotypes also displayed two modes of distributions
(Supplementary Fig. S9C), consistent with our findings for BC10.
Differentially expressed genes between two resident memory T-cell
groups are available in Supplementary Data S1. These results indicate
that the Ty, cells further divide into two populations distinguished by
low or high metabolic statuses, and the differentiation from their
precursors into these populations is dependent on the TCRs.

Identification of novel cancer-associated antigen candidates
Most current studies focus on searching for tumor antigens from
mutated genes with matched HLA alleles combining the elution of
peptides from the MHC molecules (57). However, malignant cells
may overexpress a number of genes that are usually silenced in most
normal tissues, resulting in novel antigenic targets for cancer treat-
ment. This is exemplified by the clinical use of cancer/testis antigens,
that have restrictive expression in the male germ cells (15, 16). We
performed a genome-wide differential gene expression analysis on
each of the 120 qualifying CDR3 clusters, and identified a total of 1,409
significant (FDR<0.05) genes from 115 clusters (Materials and Meth-
ods; Supplementary Data S1). In this analysis, the gene expression
levels of individuals within a given cluster were compared with those of

other patients. Of these, two clusters (1724 and 1767) showed an
interesting enrichment in colon and endometrial cancers, with distinct
CDR3 conservation patterns (Fig. 4A). We performed differential
expression analysis on the combined samples from the two clusters,
and identified Heat Shock Transcription Factor X-linked 1 (HSFX1) as
the top hit (Fig. 4B). This gene has extremely low expression (median
TPM<0.02) in all the tissue types covered in the GTEx data (58), while
expressed (TPM>1) in 13% colorectal and 73% endometrial cancers,
with higher expression (TPM>2) in 27% patients (Supplementary
Fig. S10). There is over 100-fold change in the expression levels
between some tumor samples and the normal tissues. It is also a
favorable predictor of survival for endometrial cancer (Fig. 4C).
Therefore, we hypothesized that the tissue-specific overexpression for
HSFXI may be a trigger for antitumor immune response.

Of the 17 colon or endometrial cancer samples from cluster 1724
and 1767, 9 express HSFX1 (Supplementary Fig. S11) and have solved
HLA genotypes (59). Computational prediction for HLA allele binding
suggests that HSFXI protein generates six 9-mer peptides with high
affinity to all 9 individuals. Among them, VMFPHLPAL (VMF) is the
only one binding to HLA*02:01, which is selected for experimental
validation (Supplementary Table S2 and S3 and Materials and Meth-
ods). To test whether VMF can activate T cells in vivo, we synthesized
the 9-mer antigen peptide and injected it into HLA-A*02:01 human-
ized transgenic mice (Materials and Methods). We used peptide
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Identification of HSFXT as a candidate cancer-associated antigen. A, Selective enrichments in colon and endometrial cancers of samples in CDR3 clusters 1724 and
1767. CDR3 amino acid conservation patterns were displayed in the top panel for each barplot. B, Genes ranked by P values from differential gene expression analysis,
with top hits labeled in colored texts. HSFXT has the most significant P value among all the genes. Statistical significance was evaluated using Wilcoxon rank sum test
with FDR correction. C, Kaplan-Meier survival curves for patients with endometrial cancer with or without HSFX7 expression, separated by median expression value.
Statistical significance and HRs for HSFXT levels were estimated using Cox proportional hazards model on binary input of HSFXT groups, corrected for patient age.
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Figure 5.

Immunogenicity of the 9-mer peptide derived from HSFX1 protein in HLA-A*02:01 transgenic mice. A, HLA-A*02:01 transgenic mice (female, n = 4) were
subcutaneously immunized with 10 ug peptide mixed with 100 ug poly(l:C) and 50 ug CpG1826. Fourteen days after vaccination, mice were boosted with the same
vaccine. Four days later, splenocytes were isolated for IFNy ELISpot assay. Significant difference of antigen-specific T-cell response from the control peptide was
observed (B). Data are expressed as the means + SD, and representative results from two independent experiments are shown. Statistical analysis was performed by
two-way ANOVA. ***, P < 0.00T; ****, P < 0.0001. Adj is short for adjuvant injected during vaccination. VMF, antigen peptide VMFPHLPAL; VRF, control peptide
VRFPHLPAL. C, Hematoxylin and eosin (H&E, top) staining of cytoplasm and nucleus, and IHC (bottom) staining of HSFX1 protein expression in selected endometrial
serous carcinoma samples. High-grade ESC pathology was confirmed with H&E slides. Title for each panel describes the strength of the signal (++, +, or —) and the

number of corresponding samples out of the 17 total.

VRFPHLPAL, which has one amino acid difference, as control,
because it is predicted not to bind HLA-A*02:01. After 18 days,
splenocytes of the vaccinated mice were collected to perform an
IFNYy ELISpot assay for antigen-specific T-cell responses (Fig. 5A).
Compared with the control peptide (VRF), we observed signifi-
cantly higher IFNYy response in the transgenic mice, but not in
identically primed immunocompetent mice with H-2K® genotype
(Fig. 5B; Supplementary Fig. S12).

This result indicates that VMF is a bona fide binder to human
HLA-A*02:01 allele, and can be recognized by mouse TCRs to elicit
an in vivo immune response. As human TCR repertoire is signif-
icantly larger than the mouse repertoire (32), it is likely that the
epitope can be engaged by human T cells as well. Notably, VMF may
not be the only peptide produced by HSFXI that can elicit an
immune response. Our experiment proves that at least one epitope
from HSFXI can be immunogenic. Nonetheless, in vivo immuno-
genicity of HSFX1I as a self-antigen in humans requires evasion from
central tolerance (60), given tissue-restricted gene overexpression.
Such genes have been used in cancer vaccine therapies, including
MAGEA3, NY-ESO-1, MLANA, etc. Our analysis demonstrated the
cancer-specific overexpression of HSFXI1 at mRNA level, but it
remains unclear whether protein expression is also restricted to
malignant tissues. To confirm, we collected 17 endometrial serous
carcinoma (ESC) samples and a panel of healthy tissues from
different organs as control (Materials and Methods). IHC staining
of HSFX1 was performed on all samples. Six of 17 ESC tumors
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showed positive THC staining, with 1 strong positive sample
(Fig. 5C). In contrast, no healthy tissue except placenta, which is
an immune privileged (61) organ, expressed HSFXI proteins
(Fig. 5D). In particular, HSFXI staining for benign proliferative
endometrium and myometrium are negative, suggesting that
HSFX1 is a specific marker for the malignant cells. These data
indicated that HSFX1 protein has restricted expression in a subset of
ESCs, supporting our hypothesis that HSFXI is a novel cancer-
associated antigen.

In addition to HSFX1I, we also identified a putative cancer/testis
antigen, TSSK2, with expression restricted to esophageal and stom-
ach tissues (Supplementary Fig. S13). TSSK2 also generates two
peptides binding to HLA alleles from all 5 patients with expressing
TSSK2 from cluster 189 (Supplementary Tables S4 and S5 and
Materials and Methods). These results suggest that genes with
tumor-specific overexpression might produce cancer-associated
antigens and elicit T-cell responses. Our analysis revealed a number
of such unmutated genes as promising targets for cancer vaccine
development.

Existence of cancer-associated CDR3s in the blood repertoire of
patients with cancer

In the above analysis, we observed multiple potential tumor anti-
gens showing significant associations to the iSMART identified CDR3
clusters, suggesting that the clustered CDR3s are enriched for cancer-
associated T cells. We therefore investigated whether it is feasible to
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Prediction of late- and early-stage cancers using cancer-associated CDR3s. A, Boxplot showing the distributions of the read counts for cancer-associated CDR3s for
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Cancer-associated CDR3 read count distributions for early-stage breast cancers compared with normal samples, with cancer samples being PBMCs (C) or TILd (D). E,
ROC curves for using the abundance of cancer-associated CDR3s PBMC or TIL samples (n = 16) as predictors for early breast cancer onset. AUC values are shown in
the legend. Statistical significance was evaluated using Wilcoxon rank sum test between labeled groups.

detect these CDR3s in the TCR repertoire sequencing data profiled
from the PBMCs of the patients with cancer. In this analysis, none of
the CDR3s in the TCR sequencing samples were used to generate the
TCGA TCR clusters, the latter serving as the reference cancer-
associated TCRs. We used all the TCRs in the clusters as reference
sequences and searched for their abundance in the additional TCR-
seq data. Neither age (P = 0.96, Spearman correlation test) nor
gender (P = 0.25, two-sided Wilcoxon rank sum test) was associated
with CDR3 abundance in the healthy donor cohort. We then
studied a cohort of 21 patients with late-stage melanoma before
and after anti-CTLA4 treatment (27). When compared with the
healthy donors, we identified significantly higher abundance of
cancer-associated CDR3s in the patients’ blood samples (Fig. 6A;
Materials and Methods). Using cancer-associated CDR3 counts as a
disease predictor, pre- and post- PBMC samples reached similar
AUC of 0.81 (Fig. 6B).

We next evaluated the performance of the above approach on
the challenging yet more useful task of predicting early cancer
status via PBMC repertoire. We applied the same method to study
early-stage breast cancer samples with both PBMC and TIL reper-
toires sequenced (26). Indeed, both repertoires showed significantly

higher levels of cancer-associated CDR3s than healthy donors
(Fig. 6C and D), indicating that the abundance of cancer-
associated CDR3s is able to distinguish healthy individuals from
patients with early-stage cancer as well. Using iSMART-clustered
CDR3 counts as a predictor, we observed an AUC of 0.77 for
PBMC samples (Fig. 6E). At threshold of 13, it reached 64%
sensitivity and 80% specificity. On the basis of a previous study
on cancer and inflammation (62), we speculated that during early
cancer development, the immune system is able to recognize and
respond to a few shared cancer associated antigens (such as HSFXI),
and produce a significant amount of effector T cells in the circu-
lation, allowing for cancer detection from the peripheral T-cell
repertoire.

Discussion

Despite extensive efforts and critical clinical applications, antigen-
specific TILs remain largely uncharacterized, mainly because it is
experimentally challenging to identify the immunogenic cancer anti-
gens and to profile the tumor-reactive T cells. In this work, we
extracted CDR3s from the tumor RNA-seq data, and identified a large
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number of CDR3 clusters with high sequence similarity. Because of the
excessive diversity of the TCR repertoire, the probability that
different individuals independently produce near-identical non-
public TCRs is extremely low, suggesting that shared antigen-
specificity is the main cause for the generation of these CDR3
clusters. Previous studies have also shown that TCRs sharing motifs
on the CDR3 region may recognize the same antigen (22, 23).
Therefore, we used iSMART-identified CDR3 clusters (Supplemen-
tary Data S1) as surrogates for TCR antigen specificity, and com-
prehensively analyzed the tumor-specific TILs using a large human
cancer cohort.

We leveraged the iSMART-clustered clonotypes to perform an in-
depth analysis of a tumor scRNA-seq dataset with solved TCR
sequences, and observed an interesting group of CD8" T cells. The
marker set for this group is highly consistent with a recent study on
Tm (53), suggesting reproducible identification of T,,, in triple-
negative breast tumor microenvironment. Using CDR3 as clonotype
markers, we further identified two subpopulations of T,,,, with distinct
metabolic states, and observed divergent evolutionary paths to these
states among different TIL clonotypes. Our results suggest that after
initial homing to the target tissue, T,,, may switch to a high metabolic
status. This result is potentially linked to the immunosuppressive roles
for metabolic enzymes in the malignant cells, which they use to
compete for resources required for T-cell survival and cytotoxic
functions.

It has been shown from protein structure studies that one antigenic
peptide may bind to dissimilar CDR3 sequences with different docking
strategies (63, 64), suggesting that individuals responding to the same
antigen may carry divergent TCR sequences. Indeed, we observed two
distinct CDR3 sequences from clusters 1724 and 1767, which were
both predicted to recognize the same antigen derived from cancer-
associated antigen HSFX1. We performed in vivo experiments using
transgenic humanized mice to show that a 9-mer peptide derived from
a predicted antigen HSFX1 is able to bind HLA-A*02:01, and induce
reliable T-cell responses. These results, combined with the observation
that HSFXI has restricted expression in selected cancers, and its
positive clinical relevance, strongly indicated that it might escape
central tolerance in humans and become an immunogenic cancer-
associated antigen.

A fraction of the CDR3 clusters remain unassociated with any
potential targets, likely due to the unexplored categories of cancer-
associated antigens. In our gene expression analysis, we observed
significant associations of some clusters with noncoding RNAs
(Supplementary Data S1), such as IncRNA, pseudogenes, and small
nucleolar RNAs (snoRNA). Ribosome profiling data suggests that
many noncoding RNAs are actually translated (65), which may
serve as valid cancer antigens when overexpressed in the tumor
tissues. snoRNAs participate in many biological processes, includ-
ing RNA splicing. Thus, their abnormal expression in selected
cancer types may produce new antigenic targets from alternative
splicing. Post-translational modification (PTM) may also generate
foreign peptide products that are subject to immunosurveil-
lance (17). However, due to the insufficiency of related data, it is
currently challenging to study the antigenic potentials of these
mechanisms in cancer immunity.

Our study has several limitations. First, the use of tumor RNA-seq
data to profile the infiltrating TCR repertoire has limited statistical
power to call TCR clonotypes, resulting in smaller and lower number
of clusters. With deep TCR-seq profiling of TCGA samples, more
cancer-associated TCRs and antigens would be identified. Second, to
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benchmark iSMART and other methods, we applied a dataset of
epitopes mainly from infectious diseases. Ideally, TCRs specific to
cancer antigens will be optimal to test the specificity of the clus-
tering methods. Unfortunately, due to limited known cancer-
associated antigens, the related TCRs are insufficient to evaluate
the methods. Third, in this study, we used TCR clusters as surro-
gates for shared antigen-specificity. Because of the complexity of the
adaptive immune system, it is unclear whether tumor is the main
contributor of shared antigens. This may explain the large fraction
of clusters without any association in our analysis. Fourth, using
bulk tissue RNA-seq data to call TCR is not possible to pair the TCR
of} chains. With one chain, it is not feasible to directly validate the
CDR3s predicted to recognize certain antigens through in vitro
synthetic TCRs. The in vivo experiment for the VMF peptide
demonstrated the TCR recognition potential of the epitope, but is
not conclusive evidence for its immunogenicity in humans. Immu-
nospot assays using fresh white blood cells from qualifying cancer
patients will be needed to provide definitive validations of the
predicted antigens. Finally, the analysis of cancer status using blood
TCR repertoire is preliminary, with prediction performance insuf-
ficient for practical clinical applications. A more sophisticated
machine learning algorithm on a larger cancer-associated TCR set
as training data will be needed to further improve the prediction
accuracy. Should this method be developed, additional clinical
samples from patients with early-stage cancer and healthy donors
will be needed to test its sensitivity and specificity, and evaluate its
potential utilities in cancer screens.

In summary, we provided a comprehensive analysis to characterize
cancer antigens and tumor-reactive T cells. The tool and datasets from
this study can be applied to the rapidly generated tumor single-cell
sequencing and RNA-seq data to expand the current repertoire of
cancer-associated TCRs. Therefore, we anticipate broad utilities of our
work for future studies to identify more antigens and biomarkers for
cancer immunotherapies.
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