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Abstract

Mitochondrial (MT) mutations serve as natural genetic markers for inferring clonal
relationships using single cell sequencing data. However, the fundamental challenge of
MT mutation-based lineage tracing is automated identification of informative MT
mutations. Here, we introduced an open-source computational algorithm called
“MitoTracer”, which accurately identified clonally informative MT mutations and
inferred evolutionary lineage from scRNA-seq or scATAC-seq samples. We
benchmarked MitoTracer using the ground-truth experimental lineage sequencing data
and demonstrated its superior performance over the existing methods measured by high
sensitivity and specificity. MitoTracer is compatible with multiple single cell sequencing
platforms. Its application to a cancer evolution dataset revealed the genes related to
primary BRAF-inhibitor resistance from scRNA-seq data of BRAF-mutated cancer cells.
Overal, our work provided a valuable tool for capturing real informative MT mutations
and tracing the lineages among cells.

Teaser

MitoTracer enables automatically and accurately discover informative mitochondrial
mutations for lineage tracing.
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I ntroduction

Recent advances in single cell RNA/DNA sequencing have led to deeper understanding
of the heterogeneous human cell populations (1). Such information enables dissection of
the tumor microenvironment and recovery of cell lineages (2). Previous studies have
shown that single cell sequencing technologies can detect naturally occurring somatic
mutations, which act as natural cell barcodes for different clones and lineages within
organisms, including single nucleotide variations (SNVs) and copy number variations
(CNVs) (3). However, detection of single cell nuclear SNVs or CNV's by whole-genome
sequencing is challenging due to high error rates and potential transcript end biases.

Compared with nuclear genome, the 16.6-kb long mitochondrial (MT) genome is small
for cost-effective sequencing (4). Furthermore, mitochondrial genomes have large
number of copies and higher mutation rate, which is estimated to be 10- to 100- fold
higher than nuclear genomes (5). Mitochondrial variations can be detected by single cell
RNA sequencing (scRNA-seq) and single cell assay for transposase-accessible
chromatin-sequencing (scATAC-seq) (6). ATAC-seq is an ideal technology to capture
the MT genome due to its complete openness. Unfortunately, the current protocol of
SCATAC-seq discarded the cytoplasmic contents, resulting in poor coverage of
mitochondrial genome. Several powerful technologies have been developed to overcover
this problem and to obtain high coverage sequencing data of mitochondrial genome,
including MAESTER (7) and mtscATAC-seq (8).

Although these technologies provided the platform for high quality mitochondrial
genomic data generation, mutation-based lineage tracing remains challenging.
Specifically, there lacks a computational method that can automatically and accurately
identify informative mitochondrial mutations to discriminate cdlular lineages. Several
lineage reconstruction methods are available for single cell RNA/DNA sequencing, such
as mgatk (9), SClineager (10), maegatk (7) and MQuad (11). The first three methods are
developed specifically for sScATAC-seq or sScRNA-seq. The last method could be used
across different single cell sequencing assays, but the accuracy of clonal inference in real
human data remains unsatisfactory.

To lift these limitations, we develop a new software, MitoTracer, a complete and
automatic computational method for informative mitochondrial mutation identification
from scRNA or scATAC-seq samples. This pipeline performs all the necessary analysis
steps, including mapping reads, generating mitochondrial variant allele frequency matrix,
selecting informative mitochondrial mutations, and inferring potential clonal structures.
We evaluated MitoTracer using three gold-standard datasets sequenced by bulk ATAC-
seg, sScCRNA-seq and scATAC-seq. These results demondgtrated that MitoTracer is a
complete, highly sensitive, and efficient method for informative mitochondrial mutations
that outperforms existing computational methods in scope and accuracy.
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Results

MitoTracer is an automated pipeline for sngle cell lineage tracing using
mitochondrial mutations

MitoTracer is a computational algorithm that identifies informative mitochondrial (MT)
mutations for uncovering cell lineages or clones. It utilizes droplet-based (10X genomics)
or plated-based (Smart-seq2) single cell sequencing data to detect MT mutations, such as
10X scRNA-seq data, 10X scATAC-seq data, modified 10X scRNA/DNA-seq data
(MAESTER and mtscATAC-seq), and full-length Smart-seq2 data. We employed
MERCI-mtSNP (12), a mutation-calling tool developed by our team, to identify MT
RNA/DNA mutations and to obtain a variant allele frequency (VAF) matrix for each cell
(Figure 1A). VAF may be impacted by various types of noise, such as sequencing errors
and insufficient coverage. Compared to nuclear genome, the MT genome usually has
significantly higher coverage due to shorter length. Therefore, controlling for sequencing
errors is critical for detecting informative MT mutations. To solve this issue, we
employed a previously described framework (13) to calculate the statistical power for
mutation detection while adjusted for sequencing errors. We also eiminated mutations
with extremely low or high cell-level frequencies, as such mutations are less useful to
Separate lineages or clones (Figure 1B, Step 1).

MitoTracer introduced a feature-selection process that automatically selects highly
informative mutations for distinguishing lineages using single cell sequencing data. For
each mutation, the VAF vector (VAF values across all cells) is assumed to follow a
Gaussian mixture distribution. The number of Gaussian peaks reflect the count of
distinguishable clones in the sample, which is usually unknown in real-world scenario.
Therefore, we applied Dirichlet Process (DP) prior, a commonly used technique to model
Gaussian mixture distributions with unknown number of modes (14). Variants with at
least two peaks identified from DP were kept for downstream analysis. We compared the
positions of the top two distributions assigned by DP to prioritize potential informative
MT mutations for lineage detection. Specificaly, if the two peaks are located far away, it
indicates that the two clones they represented are sufficiently distinct in the alele
frequencies of the given variant, and therefore, the variant is considered informative. The
cutoff of the distance between the top two peaks is user-defined, with a default value 0.05
(Figure 1B, Step 2). Next, MitoTracer generated a mitochondrial distance matrix
(Materiadls and Methods) using the selected mutations and performed hierarchical
clustering to infer the lineage relationships between different cells, displayed as heatmap
with dendrogram (Figure 1B, Step 3). Further details regarding quality control,
informative MT mutation selection, and lineage reconstruction can be found in the
Materials and M ethods section.

MitoTracer achieves better performance of lineage tracing

MitoTracer was benchmarked using data generated from cell lines with known lineage
relationships. Specifically, human leukemia TF1 cells were sequentially cultured, with
the initiation of next generation being a subclone of the current cells. Multiple subclones
were cultured to acquire siblings of each generation. To capture the entire mitochondrial
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genome with high coverage, both the original and expanded clones were profiled using
bulk ATAC-seq (Table S1) (9).

Using the above dataset as golden standard, we compared the accuracy of lineage
reconstruction of MitoTracer and three other approaches, including informative MT
mutations called at > 0.2 (GTEx heteroplasmy threshold) (9), MQuad (scRNA-seq or
scDNA-seq) (11), and SClineager (scRNA-seq) (10). The dataset comprised of 65 cell
populations from 15 clones (A9 to G11). Overall, VAF_cutoff, MitoTracer, MQuad, and
SClineager identified 57, 22, 1076, and 19 informative MT mutations, respectively
(Table S2). In the original study, 44 MT mutations (Table S3) were manually selected as
informative markers to reconstruct the experimental lineage (9). Of the four methods
compared, the numbers of the selected mutations that overlapped with the manual set
were 6, 15, 17, and 9 for VAF_cutoff, MitoTracer, MQuad, and SClineager, respectively
(Table $4). Notably, MitoTracer had the highest percentage of overlap (15 out of 22),
suggesting MitoTracer can specifically recognize lineage-associated MT variants with
high sensitivity. We next evaluated lineage separation accuracy of each method by using
the variants it selected. MitoTracer showed superior performance compared to the other
strategies by correctly assigning al the cell populations into their corresponding clones
(Figure 2A-2D). Hierarchical clustering performed on individual samples using
MitoTracer grouped most of the subclones to the right parental clone (Figure 2B).

To evaluate the accuracy of MT mutation-based fine-scale lineage reconstruction, we
utilized a previously employed approach (9). Specifically, given any set of 3 samples
where a true pair of siblings exists, each method is tested for the ability to select the
siblings out of the sample triplet. Siblings are defined as the clones that share the same
parental clone, thus the ‘Most Recent Common Ancestor’, or MRCA. Subsequently, we
calculated the MT distance for each sample pair using the VAF matrix of informative M T
mutations within a triplet. As siblings share MRCA, their MT distance is expected to be
smaller than the other distances. Within each triplet, we defined MT distance between
each pair of samples as the predictor, and sibling status as the response (sibling=1, non-
sibling=0). This setting allowed us to evaluate the prediction accuracies of al methods by
Setting continuous cutoffs on the predictor. We then calculated the area under the curve
(AUC) for both the receiver operating characteristic (ROC) curve and the precision-recall
(PR) curve. We further tested the performances under two scenarios: the non-sibling
sample is derived from the same MRCA (within-clone) and from a different MRCA
(between-clones). Within-clone sample is expected to be genetically ‘closer’ to the true
sibling pair, and thus more difficult to distinguish from. In both scenarios, MitoTracer
showed the best overall accuracies in identifying the true sibling pairs compared to the
other three automated methods (Figure 2E-H). We included the ROC and PR curves for
the manually selected 44 MT mutations as a standard for optimal performance, where in
both scenarios, only MitoTracer achieved similar AUCSs.

Robust identification of informative mitochondrial mutations from scRNA-seq and
scDNA-seq data

Next, we evaluated the utilities of MitoTracer on single cell datasets. We conducted an
initial analysis on a set of 5,842 cels derived from the BT142 and K562 cell lines,
comprised of 1,251 BT142 cells and 1,101 K562 cells, respectively (Table S1). This
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dataset was produced using the MAESTER platform, which is compatible with the 10x
Genomics 3 protocols (7). The MAESTER technology enhanced the coverage of MT
genome by enriching all MT transcripts. We conducted unsupervised hierarchical
clustering on the VAFs of 24 informative MT mutations called by MitoTracer. Our
analysis revealed two distinct clusters, which perfectly aligned with the two cell lines
(Figure 3A). Similarly, we examined a dataset with the same setting but generated with
another MT sequencing technology mtscATAC-seq (8), which was comprised of 437
cells from the TF1 and 519 cells from the GM11906 cell line. MitoTracer called 47
informative MT mutations, using which al cels were partitioned into two distinct
clusters, matching the cell line annotations (Figure 3B). This result demonstrated the
ability of MitoTracer to faithfully recover lineages from different genetic backgrounds.

We then tested the performance of MitoTracer using cells derived from the same genetic
background. This dataset consisted of 96 TF1 cells profiled with scATAC-seq data,
including three clones, C9 (n = 32), D6 (n = 16), and G10 (n = 48) (Table S1). These
clones were defined based on culture history (9). MitoTracer identified 23 informative
MT mutations to perform unsupervised clustering of al cells, which resulted in clearly
separated clusters (Figure 3C). The three TF1 clones were accurately grouped into
distinct branches of the TF1 dendrogram, demonstrating that MitoTracer can successfully
recover the lineages of cells within the same genetic background.

The above analyses were performed using DNA samples. We next tested MitoTracer
using RNA-seq samples, which is consdered a more challenging task due to the
relatively lower and uneven coverage in the mtDNA region. First, we applied MitoTracer
to a Smart-seq2 dataset with 8,270 cells from 9 lung cancer patients (15) to evaluate its
performance on cells with different genetic backgrounds (Table S1). Patient origins were
utilized as class labels. MitoTracer called 31 informative MT mutations by pooling all the
cells. Unsupervised clustering revealed that cells from different patients were grouped
into separate groups, each with one or more representative MT mutations (Figure 3D).
Despite the existence of 15 patient-specific MT mutations, MitoTracer successfully
detected the common MT mutations shared by a subset of lung cancer patients. These
findings demonstrated that MitoTracer is capable of accurately inferring genetic
information from different cancer patients.

Last, we tested MitoTracer using the regular 10X scRNA-seq data, which is the most
challenging task given the low coverage in the mtDNA region. We conducted the same
analysis on a 10X scRNA-seq dataset of esophageal squamous cell carcinoma (ESCC),
which contained 208,659 single cells from 60 individuals (16) (Table S1). We randomly
selected 9 ESCC patients with a total 155,56 cells from this dataset, from which
MitoTracer identified 82 informative MT mutations (Table S5). The number of patients
matched that of the lung cancer dataset for comparison purpose. Hierarchical clustering
revealed that almost 90% cells from different patients were separated into distinct groups
(Figure 3E), thus confirming the ability of MitoTracer to detect patient-specific MT
mutations from regular 10X scRNA-seq samples.

Intrinsic BRAF inhibitor-resistant clones detected by MitoTracer

We next evaluated if MitoTracer could provide biological insights through the
identification of lineage-specific MT mutations from cells of the same genetic
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background. Specifically, MitoTracer was tested on a Fluidigm scRNA-Seq dataset of
4511L.u melanoma cells harboring the BRAF V600E mutation (17). This dataset contained
162 unselected parental cells and 157 cdlls resistant to BRAF inhibitors (Table S1).
MitoTracer detected 24 informative mutations in mtDNA. Unsupervised clustering on the
VAFs of these mutations uncovered two major clusters. Cluster 1 predominantly
contained parental cells;, Cluster 2 were mostly BRAF inhibitor-resistant cells (Figure
4A). Interestingly, we observed a sub-branch within Cluster 2 that contained 37 parental
cells and 2 BRAF inhibitor-resistant cells. We postulated that this sub-branch represented
an unselected clone with intrinsc resistance to BRAF inhibitor. Notably, the
"MT_16389 G-A" mutation was exclusively detected in the resistant group (Cluster_2).
The VAF of this mutation in the intrinsic clone was lower than that in the other BRAF
inhibitor-resistant cells in Cluster 2, suggesting that this variant might be under positive
selection (Figure 4B). Furthermore, we identified differentially expressed genes (DEGS)
by comparing parental cels with and without the "MT_16389 G-A" mutation. We
detected 647 genes that displayed significant changes (Table S6; Method was described
in the Materials and Methods section). Notably, within the top 10 upregulated genes,
seven are identified as having connections to drug resistance, including COX1 (18),
COX2 (19), MT2A (20), FTH1 (21), MIF (22), MALAT1 (23), and CYTB (24).
Furthermore, recent investigations have underscored the frequent upregulation of COX2
in arange of human cancers, including melanoma, colorectal, breast, ssomach, lung, and
pancreatic tumors (25, 26) Previous research has demongtrated the efficacy of COX2
inhibition in overcoming therapeutic resistance in BRAFV600E colorectal cancer (27)
and its pivotal role in addressing drug resistance in melanoma (19, 28, 29).

Gene Set Enrichment Analysis (GSEA) revealed that the top 647 DEGs were enriched in
metabolic processes (Figure 4C), a relationship that has been established for BRAF
inhibitor resistance (30). Notably, the down-regulated genes were significantly enriched
in mMRNA metabolic process (Figure 4D). We subsequently evaluated the overal
expression levels of this gene set in parental/resistant cells with or without the
"MT_16389 G-A" mutation. Interestingly, we found that both parental and resistant cells
with the "MT_16389_G-A" mutation displayed significantly lower expression levels of
genes related to this process than the other cells (Figure 4E). A few of such genes
included: ubiquitin-like protein 5 (UBL5) (Figure 4F), Ser/Arg-rich splicing factor 3
(SRSF3) (Figure 4G), and heterogeneous nuclear ribonucleoprotein C1/C2 (HNRNPC)
(Figure 4H). Previous studies have linked UBL5 to melanoma growth as deubiquitinating
enzymes (DUBSs) (31), while depletion of SRSF3 leads to a switch in MDM4 splicing
that influences p53-mediated antiproliferative activity (32, 33). Dysregulation of
HNRNPC has been observed in lung cancer, breast cancer, and oral squamous cell
carcinoma patients (34-36). This gene has been shown to regulate tumor cell proliferation
and promote radiation resistance in pancreatic cancer (37) and mediate mMRNA
stabilization to alter energy metabolism, facilitating metastasis and invasion of oral
cancer cells (38). Callectively, these findings suggested that the top genes revealed by
MitoTracer analysis may play a role in primary BRAF-inhibitor resistance and represent
potential targets for reversing resistance.
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Discussion

Here, we developed a fully automated lineage tracing method by using the single cell
sequencing data, diminating the need of manual marker selection. Our benchmark
analysis showed that MitoTracer could reliably identify informative MT mutations and
reconstruct lineage from diverse single cell genomic data, including scATAC-seq, Smart-
seg2, 10X scRNA-seq, and variants of 10X platform single cell data. We systematically
validated our approach for both intra- and inter-patient lineage reconstruction and
demonstrate its capability of deriving biological insights.

Lineage tracing based on mitochondrial mutations has provided important insights
through recent analysis of patient samples. Zhang et al. applied this technique to construct
phylogenetic trees for MKI67+ T cells and macrophages by using the scRNA-seq data
derived from hepatocellular carcinoma patient samples (39). Their findings illuminated
shared lineages between cells in the tumor and ascites, suggesting the plausible origin of
subsets of lymphocytes and macrophages in ascites from the tumor. In another study,
Wang et a. delineated the mesenchymal-to-proneural hierarchy from glioma stem-like
cells (GSC) through mitochondrial mutations in glioma. This observation substantiates
the role of mesenchymal GSCs as the progenitors of proneural GSCs (40). Collectively,
these applications underscored the effectiveness of lineage tracing via mitochondrial
mutations as a powerful technique to trace cell migration patterns and to revea the
lineage relationshi ps among stem-like cells in malignant tumors.

A similar observation in this work as seen in the previous studies is that despite the high
mutation rate of mitochondrial genome, informative variants within a subject remain few.
Previous study has suggested an ~10-fold higher rate in mitochondrial DNA than in
nuclear DNA (41). The mutation rate of nuclear genome is estimated to be 0.06 x 10~°
per site per cell division (42), and thus for mitochondrial genome, this rate is0.06 x
10~8. We assume each cell contain at least 100 copies of mtDNA, and estimated the per
division mutation rate of mitochondrial genome to be approximately 0.001. Although this
is a very high rate, after 30 cell divisions, the expected number of cells carrying a
mtDNA mutation is approximately 2.3 x 107 (43), which account for only 2% of the
population. Statistically speaking, a variant ideally should have high heteroplasmy
(within cdll variant frequency) and high intercellular variation. These criteria required the
variant to occur early enough for population fixation and segregation, which usually need
more cell divisions. Hence, tracing of finer lineages, such as lymphocyte clona
expansion and differentiation upon antigen recognition, remains a computational
challenge.

There are also limitations of MitoTracer. First, the application of our approach to 10X
data presents challenges arising from uneven and low coverage. Another limitation is that
the sensitivity to detect smaller clones is anticipated to be suboptimal. Therefore, an
accurate and deep sequencing of mitochondrial genome is required for detecting clone-
specific MT mutations by MitoTracer. Finally, most of our conclusions are of an
exploratory nature and lack validation through additional experimental evidence.
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Although the biological effects of most mitochondrial mutations investigated in this
context remain uncertain, the precise identification of these mutations and the elucidation
of their biological functions are crucia avenues for further exploration.

Overal, the amount of scRNA-seq data in the public domain had significantly increased
in recent years, however, the agorithms for mining these datasets were still limited,
especially for the MT genome. Lineage tracing by informative MT mutations is a
powerful approach to reach this goal. Thus, MitoTracer is likely to be broadly useful and
immediately applicable, because it can automatically and accurately identify the
informative mitochondrial mutations for lineage tracing and better understanding the
biological processes from an aternative angle.
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M ethods
MT mutation detection algorithm MERCI-mtSNP

Zhang et al. developed MERCI-mtSNP (12) for calling single-nucleotide variants (SNV)
in MT genomics data generated from popular bulk or single cell sequencing technologies,
such as 10x Genomics scCRNA-seq, SCATAC-seq, smart-seg2 and bulk ATAC-seq. The
aligned bam file was used as the input of MERCI-mtSNP and extracted all reads aligned
to the MT genome. For 10X single cell sequencing data, all reads were separated by cell
barcodes and generated new MT bam file only containing the extracted MT reads.
MERCI-mtSNP called MT variants for each cell with at least K mitochondrial reads (K =
1,000 for scRNA-seq data, K = 2,000 for sScATAC-seq data). And then, the VAF for each
altered base at a given locus is the number of the supporting reads divided by the total
read depth. In order to get high-quality variants, MERCI-mtSNP used the reads with
base-quality score (base-quality score >15 for scRNA-seq data, base-quality score >25
for scATAC-seq data) to calculate the VAF values. At last, one csv file and one txt file
would be generated to represent the information of MT coverage and variants,
respectively.

MT mutations sequencing error filtering

To remove mutations that resulted in sequencing errors, we implemented additional
filtering because its comparatively higher coverage per site per cell can result in more
sequencing errors. Given the random sequencing error rate e, the probability of observing
at least midentical alternate reads due to sequencing error can be represented as:

1 ifm=0
m-—1

p(m) = 1-— Z Binom (i|n,§) ifmz=0
i=0

We then calculate the minimum number of alternate reads k supporting that the P(k) is
less than a defined false-positive rate (FPR):

k = min(m) |p(m) < FPR

We specified the sequencing error ratee = 1 X 10~ 3and FPR=5 x 1077 as the default
valuesin this study.

MitoTracer model

We developed a Dirichlet process Gaussian mixture modd to identify the clone or
lineage-specific MT mutations. The informative MT mutations are heteroplasmic and
only mutate in specific sub-cell populations. We hypothesized that the VAF distribution
of the real informative MT mutations was a mixture of several Gaussian distributions.
Thus, we can use the Dirichlet process to dissect the number of Gaussian distributions
and estimate the densities for each MT mutation. If y; denotes the ith row in VAF matrix
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with N MT mutations (rows) and M cells (columns), we rescale y; such that its mean is 0
and the standard deviation is 1, then the moddl is:

yi~k(y:16,),
Hi’"G,
G"’DP((Z, Go).

Where 9; = (u;,07) denotes the mean and variance, and G, is the base measure.
Rescaling y; leads to the default parameterization of Gy being uninformative. If we
assume the Gaussian mixture model has K components, this model may be written as:

K

p(ylell Y Hk) = z ”jN(YWj: O-])

j=1

Where 6; = {u;,0;,m;} is the set of parameters for component j, 7 are the mixing
proportions or weights (which must be positive and sum to one). We used Markov Chain
Monte Carlo (MCMC) algorithms for inference on this model. The Markov chain relies
on Gibbs updates, where each parameter is updated in turn by sampling from its posterior
distribution conditional on all other parameters. We repeat this process for 10,000 times
when the cell number is smaller than 100. In general, the total iteration of 2,000-5,000
should be sufficient.

We ordered mixture Gaussian distributions by mixing proportions for each MT mutation
and calculated the mean difference between top two distributions. The MT mutation with
the larger difference indicates more informative.

Finally, the mean difference cutoff for selection of informative mutations could be set
manually, with a default value of 0.05.

Distance matrix of cellsor clones

The distance matrix D isthe matrix whose entries are the pairwise distances between
clones or cells. We define D for pairs of observationsi, j over informative MT mutations
() by the allele frequency matrix, only MT mutations with sufficient allele frequency in
at least one clone or cell are included (minimum allele frequency > 0.01). We define the
distance matrix between observationsi,j by the distance d;; as follows:

%% JAF—AFq; + (Lig,, > 0.01| g, > 0.01)

dl,] —_
Y x (IAFx_l. > 0.01| L, > 0.01)

Wherel istheindicator function.

Data sour ce, processing and read alignment
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The comprehensive information for al datasets utilized in this paper has been provided in
Table S1. Raw fastq files for public data were downloaded from Gene expression
Omnibus (GEO), European Genome-Phenome Archive (EGA) and Sequence Read
Archive (SRA).

For each library, raw fastq files were aligned using either Bowtie2 (bulk ATAC-seq) (44),
STAR version 2.7.2b (SMART-seq and Fuidigm scRNA-Seq) (45), Cell Ranger (V6.0.0)
Software Suite (10X single cell RNA/DNA sequencing data) to the GRCh38 reference
genome. All the output bam files were utilized for mitochondrial variants calling by
MERCI-mtSNP.

Differential gene expression analyses

After normalization, the data matrix contained 34,806 genes. Significantly differentially
expressed genes were identified using the eBayes function in limma R package,
comparing parental cells contained “MT_16389 G-A” mutation with wild-type parental
cells as the baseline. We adjusted p values (q values) for multiple testing using the
Benjamini—-Hochberg method. The differentially expressed genes (q < 0.01) with log2
fold change (FC) > 1 were identified as upregulated genes, while those with log2 fold
change (FC) < 1 were identified as downregulated genes. All differentially expressed
genes were ranked by log2 fold change. Pathway enrichment was performed on ranked
lists with gene set enrichment analysis (GSEA) using KEGG and Gene Ontology.

Statistical Analysis

Computational and statistical analyses in this work were performed using the R
programming language v4.2.3. FDR control was using the Benjamini-Hochberg method.
ROC curves, PR curves, and AUC values were generated using package ROCR (v1.0-11).
Heatmaps were generated using R package pheatmap (v1.0.12). Differentially expressed
genes were identified by R package limma (v3.54.2). GSEA was performed by R package
msigdbr (v7.5.1) and clusterProfiler (v 4.10.0). Subpanels of main figures were produced
using ggplot2 (v3.4.2).


https://doi.org/10.1101/2023.11.22.568285
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.22.568285; this version posted November 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY-NC-ND 4.0 International license.

Reference

1. A. Giladi, I. Amit, Single-Cell Genomics: A Stepping Stone for Future Immunology
Discoveries. Cell 172, 14-21 (2018).

2. I. Nofech-Mozes, D. Soave, P. Awadalla, S. Abelson, Pan-cancer classification of single
cells in the tumour microenvironment. Nat Commun 14, 1615 (2023).

3. L. Kester, A. van Oudenaarden, Single-Cell Transcriptomics Meets Lineage Tracing. Cell
Stem Cell 23, 166-179 (2018).

4. N. G. Larsson, D. A. Clayton, Molecular genetic aspects of human mitochondrial
disorders. Annu Rev Genet 29, 151-178 (1995).

5. K. Krjutskov, M. Koltsina, K. Grand, U. Vosa, M. Sauk, N. Tonisson, A. Salumets, Tissue-
specific mitochondrial heteroplasmy at position 16,093 within the same individual. Curr
Genet 60, 11-16 (2014).

6. T. Biezuner, A. Spiro, O. Raz, S. Amir, L. Milo, R. Adar, N. Chapal-llani, V. Berman, Y. Fried,
E. Ainbinder, G. Cohen, H. M. Barr, R. Halaban, E. Shapiro, A generic, cost-effective, and
scalable cell lineage analysis platform. Genome Res 26, 1588-1599 (2016).

7. T. E. Miller, C. A. Lareau, J. A. Verga, E. A. K. DePasquale, V. Liu, D. Ssozi, K. Sandor, Y. Yin,
L. S. Ludwig, C. A. El Farran, D. M. Morgan, A. T. Satpathy, G. K. Griffin, A. A. Lane, J. C.
Love, B. E. Bernstein, V. G. Sankaran, P. van Galen, Mitochondrial variant enrichment
from high-throughput single-cell RNA sequencing resolves clonal populations. Nat
Biotechnol 40, 1030-1034 (2022).

8. C. A. Lareau, L. S. Ludwig, C. Muus, S. H. Gohil, T. Zhao, Z. Chiang, K. Pelka, J. M. Verboon,
W. Luo, E. Christian, D. Rosebrock, G. Getz, G. M. Boland, F. Chen, J. D. Buenrostro, N.
Hacohen, C. J. Wu, M. J. Aryee, A. Regev, V. G. Sankaran, Massively parallel single-cell
mitochondrial DNA genotyping and chromatin profiling. Nat Biotechnol 39, 451-461
(2021).

9. L. S. Ludwig, C. A. Lareau, J. C. Ulirsch, E. Christian, C. Muus, L. H. Li, K. Pelka, W. Ge, Y.
Oren, A. Brack, T. Law, C. Rodman, J. H. Chen, G. M. Boland, N. Hacohen, O. Rozenblatt-
Rosen, M. J. Aryee, J. D. Buenrostro, A. Regev, V. G. Sankaran, Lineage Tracing in
Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics. Cell 176, 1325-
1339 e1322 (2019).

10. T. Ly, S. Park, J. Zhu, Y. Wang, X. Zhan, X. Wang, L. Wang, H. Zhu, T. Wang, Overcoming
Expressional Drop-outs in Lineage Reconstruction from Single-Cell RNA-Sequencing Data.
Cell Rep 34, 108589 (2021).

11. A. W. C. Kwok, C. Qiao, R. Huang, M. H. Sham, J. W. K. Ho, Y. Huang, MQuad enables
clonal substructure discovery using single cell mitochondrial variants. Nat Commun 13,
1205 (2022).

12. H. Zhang, X. Yu, J. Ye, H. Li, J. Hu, Y. Tan, Y. Fang, E. Akbay, F. Yu, C. Weng, V. G. Sankaran,
R. M. Bachoo, E. Maher, J. Minna, A. Zhang, B. Li, Systematic investigation of
mitochondrial transfer between cancer cells and T cells at single-cell resolution. Cancer
Cell 41, 1788-1802 1710 (2023).

13. S. L. Carter, K. Cibulskis, E. Helman, A. McKenna, H. Shen, T. Zack, P. W. Laird, R. C.
Onofrio, W. Winckler, B. A. Weir, R. Beroukhim, D. Pellman, D. A. Levine, E. S. Lander, M.
Meyerson, G. Getz, Absolute quantification of somatic DNA alterations in human cancer.
Nat Biotechnol 30, 413-421 (2012).

14. Y. Li, E. Schofield, M. Gonen, A tutorial on Dirichlet Process mixture modeling. J Math

Psychol 91, 128-144 (2019).


https://doi.org/10.1101/2023.11.22.568285
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.22.568285; this version posted November 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

available under aCC-BY-NC-ND 4.0 International license.

X. Guo, Y. Zhang, L. Zheng, C. Zheng, J. Song, Q. Zhang, B. Kang, Z. Liu, L. Jin, R. Xing, R.
Gao, L. Zhang, M. Dong, X. Hu, X. Ren, D. Kirchhoff, H. G. Roider, T. Yan, Z. Zhang, Global
characterization of T cells in non-small-cell lung cancer by single-cell sequencing. Nat
Med 24, 978-985 (2018).

X.Zhang, L. Peng, Y. Luo, S. Zhang, Y. Py, Y. Chen, W. Guo, J. Yao, M. Shao, W. Fan, Q. Cui,
Y. Xi, Y. Sun, X. Niu, X. Zhao, L. Chen, Y. Wang, Y. Liu, X. Yang, C. Wang, C. Zhong, W. Tan,
J. Wang, C. Wu, D. Lin, Dissecting esophageal squamous-cell carcinoma ecosystem by
single-cell transcriptomic analysis. Nat Commun 12, 5291 (2021).

Y. J. Ho, N. Anaparthy, D. Molik, G. Mathew, T. Aicher, A. Patel, J. Hicks, M. G. Hammell,
Single-cell RNA-seq analysis identifies markers of resistance to targeted BRAF inhibitors
in melanoma cell populations. Genome Res 28, 1353-1363 (2018).

A. Pannunzio, M. Coluccia, Cyclooxygenase-1 (COX-1) and COX-1 Inhibitors in Cancer: A
Review of Oncology and Medicinal Chemistry Literature. Pharmaceuticals (Basel) 11,
(2018).

D. V. Tudor, I. Baldea, M. Lupu, T. Kacso, E. Kutasi, A. Hopartean, R. Stretea, A. Gabriela
Filip, COX-2 as a potential biomarker and therapeutic target in melanoma. Cancer Biol
Med 17, 20-31 (2020).

A. Mangelinck, M. E. M. da Costa, B. Stefanovska, O. Bawa, M. Polrot, N. Gaspar, O.
Fromigue, MT2A is an early predictive biomarker of response to chemotherapy and a
potential therapeutic target in osteosarcoma. Sci Rep 9, 12301 (2019).

A. Ali, J. Shafarin, R. Abu Jabal, N. Aljabi, M. Hamad, J. Sualeh Muhammad, H.
Unnikannan, M. Hamad, Ferritin heavy chain (FTH1) exerts significant antigrowth effects
in breast cancer cells by inhibiting the expression of c-MYC. FEBS Open Bio 11, 3101-
3114 (2021).

Q. Wang, D. Zhao, M. Xian, Z. Wang, E. Bi, P. Su, J. Qian, X. Ma, M. Yang, L. Liu, Y. Zu, S. R.
Pingali, K. Chen, Z. Cai, Q. Yi, MIF as a biomarker and therapeutic target for overcoming
resistance to proteasome inhibitors in human myeloma. Blood 136, 2557-2573 (2020).
G. Arun, D. Aggarwal, D. L. Spector, MALAT1 Long Non-Coding RNA: Functional
Implications. Noncoding RNA 6, (2020).

J. M. Peters, N. Chen, M. Gatton, M. Korsinczky, E. V. Fowler, S. Manzetti, A. Saul, Q.
Cheng, Mutations in cytochrome b resulting in atovaquone resistance are associated
with loss of fitness in Plasmodium falciparum. Antimicrob Agents Chemother 46, 2435-
2441 (2002).

A. J. Dannenberg, K. Subbaramaiah, Targeting cyclooxygenase-2 in human neoplasia:
rationale and promise. Cancer Cell 4, 431-436 (2003).

S. Zelenay, A. G. van der Veen, J. P. Bottcher, K. J. Snelgrove, N. Rogers, S. E. Acton, P.
Chakravarty, M. R. Girotti, R. Marais, S. A. Quezada, E. Sahai, C. Reis e Sousa,
Cyclooxygenase-Dependent Tumor Growth through Evasion of Immunity. Cell 162,
1257-1270 (2015).

A.Zarghi, S. Arfaei, Selective COX-2 Inhibitors: A Review of Their Structure-Activity
Relationships. Iran J Pharm Res 10, 655-683 (2011).

A. Ruiz-Saengz, C. E. Atreya, C. Wang, B. Pan, C. A. Dreyer, D. Brunen, A. Prahallad, D. P.
Munoz, D. J. Rammes, V. Burghi, D. S. Spassov, E. Fewings, Y. C. Hwang, C. Cowdrey, C.
Moelders, C. Schwarzer, D. M. Wolf, B. Hann, S. R. VandenBerg, K. Shokat, M. M.
Moasser, R. Bernards, J. S. Gutkind, L. J. van 't Veer, J. P. Coppe, A reversible SRC-relayed
COX2 inflammatory program drives resistance to BRAF and EGFR inhibition in
BRAF(V600E) colorectal tumors. Nat Cancer 4, 240-256 (2023).


https://doi.org/10.1101/2023.11.22.568285
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.22.568285; this version posted November 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

available under aCC-BY-NC-ND 4.0 International license.

K. Subbaramaiah, A. J. Dannenberg, Cyclooxygenase 2: a molecular target for cancer
prevention and treatment. Trends Pharmacol Sci 24, 96-102 (2003).

S. A. Luebker, S. A. Koepsell, Diverse Mechanisms of BRAF Inhibitor Resistance in
Melanoma Identified in Clinical and Preclinical Studies. Front Oncol 9, 268 (2019).

S. Yokoyama, Y. Iwakami, Z. Hang, R. Kin, Y. Zhou, Y. Yasuta, A. Takahashi, Y. Hayakawa,
H. Sakurai, Targeting PSMD14 inhibits melanoma growth through SMAD3 stabilization.
Sci Rep 10, 19214 (2020).

M. Dewaele, T. Tabaglio, K. Willekens, M. Bezzi, S. X. Teo, D. H. Low, C. M. Koh, F.
Rambow, M. Fiers, A. Rogiers, E. Radaelli, M. Al-Haddawi, S. Y. Tan, E. Hermans, F.
Amant, H. Yan, M. Lakshmanan, R. C. Koumar, S. T. Lim, F. A. Derheimer, R. M. Campbell,
Z.Bonday, V. Tergaonkar, M. Shackleton, C. Blattner, J. C. Marine, E. Guccione,
Antisense oligonucleotide-mediated MDM4 exon 6 skipping impairs tumor growth. J Clin
Invest 126, 68-84 (2016).

K. Yano, R. U. Takahashi, B. Shiotani, J. Abe, T. Shidooka, Y. Sudo, Y. Yamamoto, S. Kan, H.
Sakagami, H. Tahara, PRPF19 regulates p53-dependent cellular senescence by
modulating alternative splicing of MDM4 mRNA. J Biol Chem 297, 100882 (2021).

W. Guo, Q. Huai, G. Zhang, L. Guo, P. Song, X. Xue, F. Tan, Q. Xue, S. Gao, J. He, Elevated
Heterogeneous Nuclear Ribonucleoprotein C Expression Correlates With Poor Prognosis
in Patients With Surgically Resected Lung Adenocarcinoma. Front Oncol 10, 598437
(2020).

S. Wang, X. Zou, Y. Chen, W. C. Cho, X. Zhou, Effect of N6-Methyladenosine Regulators
on Progression and Prognosis of Triple-Negative Breast Cancer. Front Genet 11, 580036
(2020).

S. Zhang, X. Wu, P. Diao, C. Wang, D. Wang, S. Li, Y. Wang, J. Cheng, Identification of a
prognostic alternative splicing signature in oral squamous cell carcinoma. J Cell Physiol
235, 4804-4813 (2020).

N. Xia, N. Yang, Q. Shan, Z. Wang, X. Liu, Y. Chen, J. Lu, W. Huang, Z. Wang, HNRNPC
regulates RhoA to induce DNA damage repair and cancer-associated fibroblast
activation causing radiation resistance in pancreatic cancer. J Cell Mol Med 26, 2322-
2336 (2022).

W. Zhu, J. Wang, X. Liu, Y. Xu, R. Zhai, J. Zhang, M. Wang, M. Wang, L. Liu, IncRNA CYTOR
promotes aberrant glycolysis and mitochondrial respiration via HNRNPC-mediated ZEB1
stabilization in oral squamous cell carcinoma. Cell Death Dis 13, 703 (2022).

Q. Zhang, Y. He, N. Luo, S. J. Patel, Y. Han, R. Gao, M. Modak, S. Carotta, C. Haslinger, D.
Kind, G. W. Peet, G. Zhong, S. Lu, W. Zhu, Y. Mao, M. Xiao, M. Bergmann, X. Hu, S. P.
Kerkar, A. B. Vogt, S. Pflanz, K. Liu, J. Peng, X. Ren, Z. Zhang, Landscape and Dynamics of
Single Immune Cells in Hepatocellular Carcinoma. Cell 179, 829-845 €820 (2019).

L. Wang, H. Babikir, S. Muller, G. Yagnik, K. Shamardani, F. Catalan, G. Kohanbash, B.
Alvarado, E. Di Lullo, A. Kriegstein, S. Shah, H. Wadhwa, S. M. Chang, J. J. Phillips, M. K.
Aghi, A. A. Diaz, The Phenotypes of Proliferating Glioblastoma Cells Reside on a Single
Axis of Variation. Cancer Discov 9, 1708-1719 (2019).

N. Howell, C. B. Smejkal, D. A. Mackey, P. F. Chinnery, D. M. Turnbull, C. Herrnstadt, The
pedigree rate of sequence divergence in the human mitochondrial genome: there is a
difference between phylogenetic and pedigree rates. Am J Hum Genet 72, 659-670
(2003).

M. Lynch, Rate, molecular spectrum, and consequences of human mutation.
Proceedings of the National Academy of Sciences 107(3), 961-968 (2010).


https://doi.org/10.1101/2023.11.22.568285
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.22.568285; this version posted November 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

43. S. A. Frank, Numbers of Mutations within Multicellular Bodies: Why It Matters. Axioms
12, (2023).

44. B. Langmead, S. L. Salzberg, Fast gapped-read alignment with Bowtie 2. Nat Methods 9,
357-359 (2012).

45. A. Dobin, C. A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson,
T. R. Gingeras, STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21 (2013).


https://doi.org/10.1101/2023.11.22.568285
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.11.22.568285; this version posted November 22, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Figuresand L egends

Figure 1. Overview of MitoTracer algorithm. (A) The whole analysis process of
identifying informative MT mutations. MERCI-mtSNP calls MT mutations from single
cell RNA or DNA sequencing data. The VAF matrix is generated for MitoTracer. (B)
Informative MT mutation selection. MitoTracer firstly removes mutations caused by
sequencing errors, and filters variants with extremely low/high cell- or sample-level
frequency. Dirichlet process Gaussian mixture model is conducted on each MT mutation
to find out informative MT mutation. We define the informative MT mutation as the
absolute difference between the mean in the top two Gaussian distributions larger than
the cutoff. MitoTracer uses the VAF matrix of these informative mutations to calculate
the similarity matrix based on several distance methods, including the mitochondrial
distance defined by ourselves, Euclidean, and correlation.

Figure 2. Performance comparison. (A-D) Performance comparison on a gold-standard
dataset with 15 clones among four methods, including (A) VAF_cutoff, (B) MitoTracer,
(C) MQuad, and (D) SClineager. Clone information is labeled by the “Clone” annotation
bar on the right side of the heatmap. (E-F) ROC of the manual selection method and the
above four methods under between-clone and within-clone. (G-H) PRC of the manual
selection method and the above four methods under between-clone and within-clone.

Figure 3. Validation of the MitoTracer algorithm. (A) Unsupervised hierarchical
clustering of the VAF matrix of 24 informative MT mutations showed the clearing
clustering of BT142 and K562 cdls for the MAESTER dataset. (B) Unsupervised
hierarchical clustering of the VAF matrix of 47 informative MT mutations showed the
clearing clustering of GM11906 and TF1 cells for mtscATAC-seq dataset. (C)
Unsupervised hierarchical clustering of the VAF matrix of 23 informative MT mutations
showed the clearing clustering of C9, D6, and G10 hematopoietic cells for the scCATAC-
seq dataset. (D) Unsupervised hierarchical clustering of the VAF matrix of 31
informative MT mutations showed the clearing clustering of cells by their patient origin
for the SMART-seg2 dataset. (E) Unsupervised hierarchical clustering of the VAF matrix
of 82 informative MT mutations showed the clearing clustering of cells by their patient
origin for the 10X scRNA-seq dataset.

Figure 4. MitoTracer identified essential primary BRAF inhibitor-resistant genes.
(A)The reconstructed lineage was visualized by heatmap from MitoTracer. All these cells
were clustered into two major clusters labeled “Cluster_1” and “Cluster 2”. Cédlls were
labeled according to their original BRAF inhibitor resistance status, “Resistant” and
“Parental”. We also labeled the primary resistant cells predicted by MitoTracer with
“Resistant Cells’. (B) Graphic description of positive selection for primary resistant-
related MT mutation, MT_16389_G-A. (C) Gene ontology biological process enrichment
results of 674 differentially expressed genes. (D) GSEA enrichment results of 674
differentially expressed genes. (E) The overall expression level across resistant and
MT_16389_G-A status. We defined the group “MTO” which presented the cells with
MT_16389 G-A mutation, and MT1 indicated the cells without MT_16389 G-A
mutation. (F-G) the expression level of PSMB3, SNRPD2, and UBLS5 across resistant and
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MT _ 16389 G-A status. The definition of the group was the same as (E). ***P<0.0001
and **** P<(0.00001.

Supplementary Tables:

Table S1. All public datasets used in this study.

Table S2. Thelist of MT variants called by four methods.

Table S3. The44 MT variants selected by Vijay.

TableA. The MT variantsoverlap between manual set and four methods.
Table S5. Thelist MT variants called by MitoTracer in ESCC patients.
Table S6. The 647 DEGslist.
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Figure 4. MitoTracer identified essential primary BRAF inhibitor-resistant genes.
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